The therapeutic potential of the phytocannabinoid cannabidiol for Alzheimer’s disease
Tim Karla,b, Brett Garnerc,d and David Chengb,e

Alzheimer’s disease (AD) is the most common neurodegenerative disorder, characterized by progressive loss of cognition. Over 35 million individuals currently have AD worldwide. Unfortunately, current therapies are limited to very modest symptomatic relief. The brains of AD patients are characterized by the deposition of amyloid-β and hyperphosphorylated forms of tau protein. AD brains also show neurodegeneration and high levels of oxidative stress and inflammation. The phytocannabinoid cannabidiol (CBD) possesses neuroprotective, antioxidant and anti-inflammatory properties and reduces amyloid-β production and tau hyperphosphorylation in vitro. CBD has also been shown to be effective in vivo making the phytocannabinoid an interesting candidate for novel therapeutic interventions in AD, especially as it lacks psychoactive or cognition-imparing properties. CBD treatment would be in line with preventative, multimodal drug strategies targeting a combination of pathological symptoms, which might be ideal for AD therapy. Thus, this review will present a brief introduction to AD biology and current treatment options before outlining comprehensively CBD biology and pharmacology, followed by in-vitro and in-vivo evidence for the therapeutic potential of CBD. We will also discuss the role of the endocannabinoid system in AD before commenting on the potential future of CBD for AD therapy (including safety aspects). Behavioural Pharmacology 28:142–150 Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.

Behavioural Pharmacology 2017, 28:142–150
Keywords: Alzheimer’s disease, cannabidiol, cannabinoid receptor, cannabinoids, cognition, dementia, endocannabinoid system, learning and memory, mouse model, therapy

*School of Medicine, Western Sydney University, Campbelltown, 1Neuroscience Research Australia (NeuRA), Randwick, 2Lunawara Health and Medical Research Institute, 3School of Biological Sciences, University of Wollongong, Wollongong and 4Victor Chang Cardiac Research Institute, Darlington, New South Wales, Australia

Correspondence to Tim Karl, PhD, School of Medicine, Western Sydney University, Campbelltown, NSW 2761, Australia
Email: t.karl@westernsydney.edu.au

Received 4 April 2016 Accepted as revised 28 June 2016

Alzheimer’s disease
As the world’s population ages and life expectancy increases, many individuals are faced with an increased risk of developing dementia. Dementia is the severe loss of cognitive abilities that is not part of the normal ageing process and currently, over 46 million individuals worldwide are living with dementia (Ferri \textit{et al.}, 2005; Prince \textit{et al.}, 2015). The most prominent form of dementia is Alzheimer’s disease (AD), which is predicted to affect one in 85 individuals globally by the year 2050. AD is categorized by three progressive clinical stages: mild, moderate and severe (Zandi \textit{et al.}, 2002). The mild stage is characterized by short-term memory loss, subtle difficulties in learning and communication as well as spatial disorientation. During the moderate stage, memory decline (e.g. noticeable lapses in short-term memory and loss of reading and writing ability) begins to affect everyday tasks, resulting in increased frustration and loss of emotional control. In the severe stage, AD patients face a universal disruption of cognitive abilities including severely impaired learning and speech, inability to recognize familiar individuals and loss of control over bodily functions. Eventually, individuals are left in a weakened physical state where they are prone to other illnesses (e.g. infections).

Biology of Alzheimer’s disease
AD is characterized as either sporadic (late onset) or familial (early onset, autosomal dominant). Sporadic AD is the most common and least understood form of AD, accounting for up to 95% of reported AD cases (Gotz and Ittner, 2008). The age of onset for sporadic AD is usually around 65 years. The cause of sporadic AD remains to be elucidated, but it is believed to result from a complex interaction of various environmental risk factors and multiple susceptibility genes (Kamboh, 2004). Considerable information has been obtained from the analysis of genetic risk factors. The \textit{APOE} genotype is by far the most robust predictor of AD risk, with the e4 allele leading to an increased risk and the e2 allele conferring protection compared with the most common e3 allele (Corder \textit{et al.}, 1993). Genome-wide association studies have confirmed the importance of \textit{APOE} in AD risk and also identified several additional genetic risk factors, many of which are, like \textit{APOE}, related to lipid homeostasis (e.g. \textit{GAB2}) (Beltbin \textit{et al.}, 2011).

Familial AD is autosomal dominant and accounts for less than 10% of cases, with an earlier age of onset than the sporadic form, and often occurring at 40-50 years of age. Familial AD is linked to mutations in the amyloid precursor protein gene (\textit{APP}) or in genes encoding presenilin
1 (PSI) and presenilin 2 (PS2). Mutations in PSI or PS2 cause the most common and aggressive forms of familial AD and are responsible for the activity of γ-secretase, one of the enzymes responsible for the cleavage of APP into β-amyloid peptides (Aβ). Aβ peptides are found in human brains and have an important damaging pathological function in AD. However, they are also involved in several other processes, including the regulation of cholesterol transport, antioxidant and antimicrobial properties (Baruch-Suchodolsky and Fischer, 2009; Soscia et al., 2010; Umeda et al., 2010). They possess high turnover rates and are associated with synaptic vesicle release, implying a role in neurotransmission (Marchesi, 2011).

APP is cleaved and processed by α, β- and γ-secretases via two pathways: a nonamyloidogenic and an amyloidogenic pathway. The nonamyloidogenic pathway accounts for the majority of APP processing in the healthy brain, whereby APP is cleaved by α-secretase to generate: (a) a soluble N-terminal fragment (sAPPα), which has neuroprotective properties; (b) a C-terminal fragment (CTFα), which is retained in the membrane and processed further by γ-secretase to yield an N-terminal fragment (p3); and (c) a membrane-bound C-terminal fragment, the APP intracellular domain, which regulates gene transcription.

The first pathological hallmark of AD is the deposition of Aβ. A minority of APP is processed by the amyloidogenic pathway, leading to the generation of Aβ: first, β-secretase cleaves APP, resulting in soluble Aβ and a cell membrane bound fragment, and second, γ-secretase cleaves this fragment further, producing Aβ and APP intracellular domain. Importantly, the majority of Aβ produced are 40 residues in length (Aβ40), whereas ~10% form the 42 residue-length variant (Aβ42). Aβ42 is the longer, more hydrophobic isoform that is more prone to fibril formation and therefore found predominantly in cerebral plaques. Mutations in APP or the genes for the APP-processing enzymes presenilin 1 or presenilin 2 appear to influence the overproduction of Aβ42. The excessive production of Aβ42 increases its aggregation in extracellular deposits that form amyloid or senile plaques, one of the two distinct types of lesions observed post mortem in the brains of AD patients.

The second pathological hallmark of AD is the intracellular accumulation and hyperphosphorylation of the microtubule-associated protein tau, which leads to the formation of neurofibrillary tangles (NFTs). Tau is predominantly found in axons of neurons, where it promotes the assembly of microtubules from tubulin, stabilises them and supports microtubule-dependent axonal transport of organelles and biomolecules. In the healthy brain, two to three amino acid residues on tau are phosphorylated, whereas in AD, tau proteins are hyperphosphorylated (average of nine phosphates per molecule), leading to lowered tau affinity for microtubules, increased tau resistance to calcium-activated neutral proteases and finally the aggregation and formation of NFTs (Lle et al., 2005). However, so far, no tau mutations have been linked to AD (Andorfer et al., 2003; Wolfe, 2009; Armstrong, 2013).

The presence of elevated Aβ in the brain is strongly correlated with cognitive decline in patients diagnosed with early dementia (Naslund et al., 2000) and this has been confirmed using transgenic AD mouse models that routinely express mutant forms of APP and PS1 (Hsiao et al., 1996; Holcomb et al., 1998). However, other preclinical data argue against a direct correlation of amyloid plaque load with cognitive abilities in AD mouse models, suggesting that amyloid plaques might not be the cause of AD, but rather a consequence of pathologic changes in brain metabolism (Stumm et al., 2013). It has been hypothesized that deposits of Aβ are responsible for causing and exacerbating tau hyperphosphorylation and the generation of NFTs as Aβ depositions have been found before any signs of tau pathology (Gott et al., 2001). Accumulation of tau and the associated NFTs induce cognitive deficits, which correlate with neurodegeneration. Transgenic mouse models expressing tau mutations show cognitive deficits and AD-relevant pathology (Barten et al., 2012). These processes eventually lead to neuronal death and ultimately dementia (amyloid cascade hypothesis). In humans, extensive tau pathology is generally associated with later stages of AD, but changes in tau biology could potentially also occur much earlier (Kurt et al., 2005). Some researchers argue that tau pathology correlates best with AD progression (Gott et al., 2008).

An additional hypothesis on the role of Aβ in AD suggests that resting microglia become activated in response to the presence of Aβ and cluster at sites of amyloid deposition in the brain. This initiates neuroinflammatory processes and the release of neurotoxic factors (e.g., proinflammatory cytokines and reactive oxygen and nitrogen species) (Streit, 2004), resulting in the manifestation of several characteristic AD pathologies such as neurodegeneration, neuroinflammation, neurotoxicity and oxidative damage (amyloid cascade-neuroinflammation hypothesis). On the one hand, neuroinflammation could be a beneficial event, inducing an immune response to start the phagocytosis of amyloid species in an attempt to limit the development of the disease. On the other hand, prevailing evidence suggests that neuroinflammation is a driving force in the acceleration of AD development as it triggers the production of proinflammatory chemokines, cytokines and neurotoxins by the activated microglia and astrocytes in the brain. It should also be recognized that microglia exist in a spectrum of functional phenotypes that may reflect helpful (e.g., Aβ clearance) or harmful (e.g., overproduction of proinflammatory cytokines and free radicals) roles. Recently, approaches to selectively upregulate the helpful functions of microglia have received increased attention (Perry et al., 2010; McGeer and McGeer, 2015).
Treatment of Alzheimer's disease

Given the looming burden of AD, pharmacological regimens that could delay or even prevent the onset of AD would offer tremendous public health benefits. On the basis of the complex pathology of AD, a preventative, multimodal drug approach targeting a combination of pathological AD events early in disease development appears to be ideal. Unfortunately, current AD treatments only provide limited relief for cognitive and functional decline in the early stages of the disease and are ineffective against disease progression (Zandi and Breiter, 2001; Benito et al., 2007; Marchalant et al., 2008; Karl et al., 2012). Furthermore, these treatment options cause a range of adverse side effects (e.g. nausea, vomiting, abdominal pain, headache, depression and dizziness) (Benito et al., 2007; Micale et al., 2007; Marchalant et al., 2008). Therefore, it is necessary to explore new therapeutic avenues. Importantly, cannabinoids show anti-inflammatory, neuroprotective and antioxidant properties and have immunosuppressive effects. More recently, cannabinoids have also been found to possess properties that may reduce Aβ and tau pathology (Karl et al., 2012). Thus, cannabinoid-related intervention strategies may have therapeutic properties in AD. The phytocannabinoid cannabidiol (CBD) is of particular interest as it lacks the psychoactive and cognition-imparing properties of other cannabinoids. What is currently known about the pharmacological properties of CBD and its potential role in AD therapy will be outlined in the following sections.

Cannabidiol

The phytocannabinoid CBD was first isolated from *Cannabis sativa* in 1940 (Adams, 1940) and its structure was elucidated in the 1960s (Mechoulam and Gaoni, 1965). CBD has very low toxicity. The LD₅₀ after intravenous administration to the rhesus monkey is 212 mg/kg, whereas the oral LD₅₀ could not be established, probably because of the fact that CBD is barely absorbed systemically after oral administration (i.e. oral bioavailability ranges between 13 and 19%) (Mechoulam et al., 2002). If injected, CBD is rapidly distributed and easily passes the blood-brain barrier because of its lipophilicity, which in turn provides CBD a prolonged elimination (Grotenhermen, 2003). A high volume of distribution (~32 l/kg) has been estimated, with rapid distribution not only in the brain but also in adipose tissue and other organs (Devinsky et al., 2014). Preferential distribution to fat raises the possibility of accumulation of CBD deposits in chronic administration schemes, especially in patients with high adiposity. The metabolism of CBD shows biotransformation routes typically observed for phytocannabinoids [but species differences must be considered when assessing preclinical research data; see Bergamaschi et al. (2011)]. CBD undergoes multiple hydroxylations, and oxidations to carboxylic acids, β-oxidation, conjugation and epoxidation (Harvey et al., 1991). Eventually, CBD is preferentially excreted in urine, both in the free state and as its glucuronide, with a half-life of 9 h [reviewed in Iuvone et al. (2009)].

The pharmacological properties of CBD range from anticonvulsive, anxiolytic and antipsychotic (Zuardi et al., 1991, 1995; Leweke et al., 2000; Schneider et al., 2002) to antinauses, anti-inflammatory and antirheumatoid arthritic [outlined more comprehensively in Pertwee (2008); Russo (2011)]. Importantly, CBD is a multitarget drug that can interact with many signalling systems including the endocannabinoid system (ECS; outlined in more detail in the Cannabidiol pharmacology section).

Brief introduction to the endocannabinoid system

The ECS is an intercellular signalling system comprised of (a) G-protein-coupled (GPR) cannabinoid receptors 1 (CB₁) and 2 (CB₂) as well as more recently discovered receptors (e.g. N-arachidonylethanolamine receptor or G-protein-coupled receptor 18; GPR18), (b) endogenous ligands, the best characterized ones being the arachidonic acid derivatives N-arachidonylethanolamine (AEA, also called anandamide) and 2-arachidonoylglycerol (2-AG) and their homologues, and (c) metabolic enzymes (for an overview, see Table 1). The enzymes responsible for the biosynthesis of AEA require complete characterization, but an N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) has been implicated in the process as has diacylglycerol lipase-α (DAGL-α) for 2-AG. The metabolism of anandamide and 2-AG requires fatty amide acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively (Piomelli, 2003; Howlett et al., 2011). The ECS is involved in a variety of physiological processes including appetite, pain sensation, mood and cognition. There are two main groups of cannabinoids that interact with the receptors of the ECS, namely, the endogenous ligands (i.e. 2-AG and AEA) and exogenous cannabinoids. Exogenous cannabinoids include various phytocannabinoids derived from the marijuana plant, *C. sativa*, including Δ₉-tetrahydrocannabinol (THC), the main psychoactive and cognition-imparing component, and CBD, as well as synthetic cannabinoids (i.e. cannabinomimetics such as CP 55,940 and WIN 55,212-2) (Tanasecu and Constantinescu, 2010) (for an overview, see Table 1).

CB₁ receptors are highly expressed throughout the brain by many different classes of neurons and also at lower levels by glial cells and many peripheral cell types (Pertwee, 2008). These receptors are found in abundance in the basal ganglia, cerebellum and more importantly the hippocampus, parahippocampal and entorhinal cortices, suggesting an involvement of CB₁ in learning and memory. CB₁ has also been implicated in cannabinoid-mediated modulation of immune functions (Cabras et al., 2008). CB₂ receptors are predominantly found on a variety of immune cells including B lymphocytes, natural killer cells, monocytes/macrophages and T cells, suggesting a role in immunomodulation. Importantly, CB₂ is also
<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocannabinoids</td>
<td>Full agonist at CB1 with neuroprotective effects</td>
<td>Stella et al. (1997)</td>
</tr>
<tr>
<td>2-Arachidonylglycerol (2-AG)</td>
<td>Agonistic properties at both CB1 and CB2 with effects on appetite, learning and memory, and the generation of motivation and pleasure</td>
<td>Devane et al. (1992)</td>
</tr>
<tr>
<td>N-arachidonoylthanolamine (AEA or arachadonic acid)</td>
<td>>100 constituents of Cannabinoid active including the main psychoactive component Δ9-tetrahydrocannabinol (THC) and the nonpsychoactive constituent cannabidiol (CBD); a multitude of effects have been described including on pain sensitivity, mood, appetite and cognition</td>
<td>Felker et al. (2001)</td>
</tr>
<tr>
<td>Eicosanoids</td>
<td>Synthetic cannabinoids that mimic actions of phytocannabinoids such as CP 55,940 or WIN 55,212-2 (for effect range, see Phytoannabinoids)</td>
<td>Lambert and Fowler (2006)</td>
</tr>
<tr>
<td>Phytocannabinoids</td>
<td>Natural ligand for CB1; potentiates activity of other endocannabinoids including 2-AG</td>
<td>Ben-Shabat et al. (1998)</td>
</tr>
<tr>
<td>Cannabinominetics</td>
<td>PPARγ is the main target of PEA, but it also has affinity to cannabinoid-like Grouped receptors GPR55 and GPR19, but no affinity for CB1/CB2; it can enhance the effects of AEA probably through TRPV1</td>
<td>Lo Vomé et al. (2006)</td>
</tr>
<tr>
<td>Endo- cannabinoids</td>
<td>Synthesis of AEA and PEA</td>
<td>Godlewski et al. (2009)</td>
</tr>
<tr>
<td>Palmitoylethanolamid (PEA)</td>
<td>Degradation of 2-AG</td>
<td>Dinh et al. (2002); Makara et al. (2006)</td>
</tr>
<tr>
<td>Synthesizing/metabolic enzymes</td>
<td>Degradation of 2-AG and AEA</td>
<td>Mars et al. (2010)</td>
</tr>
<tr>
<td>N-acylethanolamine phospholipase D (NAPE-PLD)</td>
<td>Degradation of 2-AG</td>
<td>Cavalli et al. (2001)</td>
</tr>
<tr>
<td>Dioctylglycerol lipase α and β (DAGL-α/β)</td>
<td>Degradation of 2-AG</td>
<td>Davoli et al. (2004)</td>
</tr>
<tr>
<td>Monocacylglycerol lipase (MAGL)</td>
<td>Degradation of 2-AG and AEA</td>
<td></td>
</tr>
<tr>
<td>Serine hydrolase αβ-hydrolase domain-containing 6 (ABHD6)</td>
<td>Involved in the majority of CNS effects of cannabinoids including psychoactive and in immune functions</td>
<td>D’Souza (2007); Cabral et al. (2008)</td>
</tr>
<tr>
<td>Fatty acid amide hydrolase (FAAH)</td>
<td>Involved in immune function and neuroinflammatory responses in CNS</td>
<td>Water et al. (2003); Remirez et al. (2008); Pacher and Mechoulam (2011)</td>
</tr>
<tr>
<td>Main receptors for cannabinoids</td>
<td>Cannabinoid receptor 1 (CB1)</td>
<td></td>
</tr>
<tr>
<td>Cannabinoid receptor 2 (CB2)</td>
<td>Cannabinoid receptor, activation by AEA and phytocannabinoids (e.g., THC and CBD)</td>
<td>McHugh et al. (2010); McHugh (2012)</td>
</tr>
<tr>
<td>N-acetylsarcolactamine receptor or GRP18</td>
<td>Potentially cannabinoid receptor, activated by both endocannabinoids and phytocannabinoids such as THC and CBD</td>
<td>Brown (2007); McHugh et al. (2010); Henningfield (2012)</td>
</tr>
<tr>
<td>GPR55</td>
<td>Potentially cannabinoid receptor, implicated in regulation of food intake and body weight; activation by AEA</td>
<td>Brown (2007); McHugh et al. (2010)</td>
</tr>
<tr>
<td>GPR119</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNS, central nervous system; GPR, G-protein coupled receptor.

densely expressed on activated microglia cells, which suggests a possible role in mediating neuroinflammatory responses in the central nervous system. Stimulation of CB2 receptors in microglia not only drives the proliferation and migration of microglia but can also block their differentiation into a neurotoxic phenotype (Stella, 2010).

Radioligand binding studies into the developmental pattern (neonatal until 32 months of age) of cannabinoid receptors in rat brain, using the full CB1 and CB2 agonist CP 55,904, showed that cannabinoid receptor-binding capacity increases progressively from birth to postnatal day 60 in whole-brain preparations, whereas no further changes in binding are detected in adulthood and throughout the normal ageing process (Belue et al., 1995). Interestingly, and in line with emerging evidence suggesting that CB2 deposits in AD brain are the result of impaired clearance, is the fact that activation of CB2 by 2-AG as well as the suppression of the endocannabinoid (eCB)-degrading enzyme MA GL (but not FAAH or αβ-hydrolase domain containing 6: ABHD6) elevates Aβ clearance across the blood–brain barrier (Bachmeier et al., 2013).

Cannabidiol pharmacology

Cannabidiol effects on the endocannabinoid system

The pharmacokinetic plasma pattern of CBD resembles that of THC, as does its metabolic pattern (Grotzch, 2003). CBD has been found to have very low displacement activities at CB1 and CB2 receptors compared with other cannabinoids such as THC and WIN 55,212-2 (Thomas et al., 1998). Another study in the same year confirmed that CBD has a very low affinity (micromolar range) for CB1 as well as CB2 receptors. More importantly, that work suggested that CBD develops antagonistic-like properties against the synthetic cannabinoid, CP 55,940, which is a full and highly potent agonist of CB1 and CB2 receptors, and that CBD has no agonistic activity at cannabinoid receptors even at high concentrations (Petitet et al., 1998). These findings were in line with earlier reports showing that CBD can reverse the behavioural effects induced by THC (Karioti et al., 1974; Zuardi et al., 1981), although the study
by Petitet et al. (1998) found no CBD-induced blockade of CP 55,940-induced hyperthermia in mice. Interestingly, another study found that CBD antagonizes (or inversely agonizes) not only CP 55,940 but also WIN 55,212-2, but because CBD produced this antagonism at concentrations well below those at which it binds to cannabinoid receptors, the authors concluded that CBD acts at prejunctional sites that are unlikely to be CB₁ or CB₂ receptors (Pertwee et al., 2002). In a follow-up study, CBD showed inverse agonism at human CB₂ receptors and was a high potency, non-competitive antagonist of cannabinoid receptor agonists in mouse brains as well as in membranes from CHO cells transfected with human CB₂ (Thomas et al., 2007). CBD induced inverse agonism at CB₂ receptors at concentrations well below those at which it displaces CP 55,940. This characteristic of CBD may contribute towards its anti-inflammatory properties as there is evidence that CB₂ inverse agonism can inhibit immune cell migration (Lunn et al., 2006). In line with this, CBD is a potent inhibitor of evoked migration both of murine microglial cells and macrophages and of human neutrophils [reviewed in Pertwee (2008)]. In addition, CBD appears to be an antagonist on GPR55 (Ryberg et al., 2007) and GPR18 (McHugh et al., 2010) receptors, and activates the putative abnormal CBD receptor (Pertwee, 2005, 2008). Bisogno et al. (2001) discovered that CBD also interacts with vanilloid receptor type 1 (VR1), the receptor for capsaicin as it stimulated VR1 with a maximal effect similar in efficacy to that of capsaicin, suggesting that VR1 may mediate some of the pharmacological effects of CBD (Bisogno et al., 2001). Finally, there is limited evidence that suggests CBD might also activate the vanilloid receptor type 2 (Izzo et al., 2009).

CBD also impacts brain 5CB levels directly. An initial study reported interactions between CBD and proteins that inactivate AEA (Bisogno et al., 2001). CBD inhibited AEA uptake and, to a lesser extent, AEA hydrolysis. These findings suggested that increased levels of endogenous AEA because of CBD-induced inhibition of AEA uptake and degradation (Watanabe et al., 1996) might mediate some of the pharmacological effects of CBD. Supporting this idea is another study, which reported that CBD blunts the expression and the activity of FAAH, the enzyme required for the degradation of both AEA and 2-AG (De Filippis et al., 2008; Leweke et al., 2012).

Cannabidiol effects on other neurotransmitter systems and brain processes

The role of CBD in brain circuits other than the ECS has also been evaluated. In 1998, CBD was found to protect against neurotoxicity mediated by glutamate receptors, that is, N-methyl-D-aspartate (NMDA) receptors, 2-amino-3-(4-buty1-3-hydroxiosazol-5-yl)propionic acid (AMPA) receptors and kainate receptors (Hampson et al., 1998). CBD has also been reported to show a modest agonistic affinity of human serotonergic 5-HT₁₅ receptors (Russo et al., 2005), where it inhibits 5-HT re-uptake and reduces overall 5-HT neurotransmission [reviewed in Pertwee (2004)]. In line with the earlier statement that CBD has species-dependent properties, CBD discriminated between human and rat orthologues of the 5-HT₁₅ receptor (Russo et al., 2005). Furthermore, CBD enhanced adenosine receptor A₁ signalling by inhibition of cellular uptake of an adenosine transporter (Carrier et al., 2006). This effect may at least partially be responsible for CBD’s ability to decrease inflammation and to be neuroprotective. Although not relevant for the in-vivo effects (as the CBD doses required were not biologically relevant), CBD was reported to possess allosteric modulator properties for μ-opioid and δ-opioid receptors at very high concentrations (i.e., the dissociation rate induced by naloxone and naltrindole at receptors was accelerated by 100 μM CBD) (Kathmann et al., 2006). This is an interesting finding considering that δ-opioid receptors can form a complex with β-secretases and γ-secretases, thereby promoting the processing of APP to Aβ (Teng et al., 2010). Finally, there is also some experimental evidence to support CBD activity in other pathways such as the dopamine and γ-aminobutyric acid neurotransmitter systems [reviewed in Pertwee (2004)].

It has also been shown that CBD can increase adult hippocampal neurogenesis (Wolf et al., 2010). Interestingly, this effect is absent in CB₁ knockout mice, suggesting that the effect of CBD on neurogenesis is mediated by an indirect activation of CB₁ receptors, possibly by inhibition of AEA metabolism/uptake (as discussed earlier). Supporting this finding is a recent in-vitro study showing that CBD increases the proliferation of hippocampal progenitor cells in culture, which can be prevented by antagonists for both CB₁ and CB₂ receptors or overexpression of FAAH (Campos et al., 2011). Further, AD-specific pharmacological actions of CBD have been reported. These will be outlined in more detail in the following sections (in particular, the sections on the effects of CBD in in-vitro and in-vivo AD models), where the therapeutic properties of CBD in preclinical models for the disease are discussed (for a full overview of pharmacological actions of CBD, see Table 2).

Cannabidiol: a new treatment option for Alzheimer’s disease – a preclinical perspective

As discussed earlier, the molecular mechanisms by which CBD exerts its various effects are still under debate, with evidence suggesting that its actions are not confined to the receptors of the ECS. Importantly, for this review, a number of studies provide evidence that CBD has various properties including neuroprotection, anti-inflammatory and antioxidant effects, and can modulate the function of the immune system [as reviewed in Campbell and Gowran (2007); Pertwee (2008); Izzo et al. (2009); Seledri et al. (2009); Booz (2011)]. This evidence will be outlined in the following sections in the context of in-vitro and in-vivo models relevant to AD.
Table 2 Pharmacological targets of CBD

<table>
<thead>
<tr>
<th>Pharmacological target</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-vitro studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibition of caspase 3</td>
<td>Increased cell survival, decreased ROS production and lipid peroxidation in PC12 cells exposed to Aβ</td>
<td>Ixone et al. (2004)</td>
</tr>
<tr>
<td>(involved in the signaling pathway for CBD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibition of phosphorylated p38 MAP kinase; activation of nuclear factor-κB (NF-κB)</td>
<td>Inhibit nitric oxide production and iNOS protein expression in PC12 cells exposed to Aβ</td>
<td>Esposito et al. (2006a)</td>
</tr>
<tr>
<td>Rescue of Wnt/β-catenin pathway</td>
<td>Rescues Aβ-induced toxicity and inhibits tau protein hyperphosphorylation in PC12 cells exposed to Aβ</td>
<td>Esposito et al. (2006a)</td>
</tr>
<tr>
<td>NMDA, AMPA and kainate receptors</td>
<td>Reduction of glutamate-induced toxicity in primary cortical neurons</td>
<td>Hampson et al. (1998)</td>
</tr>
<tr>
<td>Activation of PPARγ</td>
<td>Induced ubiquitination of APP and decreased Aβ production in APP-expressing human neuroblastoma cells</td>
<td>Scuderi et al. (2014)</td>
</tr>
<tr>
<td>In-vivo studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glial pathways</td>
<td>Reduction in interleukin-1β, iNOS expression and subsequent NO release in Aβ-injected mice</td>
<td>Esposito et al. (2007)</td>
</tr>
<tr>
<td>Microglia</td>
<td>Induced microglial migration, suppression of interleukin-6 and prevented spatial memory deficits in Aβ-injected mice</td>
<td>Martin-Moreno et al. (2011)</td>
</tr>
<tr>
<td>Indirect activation of CB1 receptor</td>
<td>Increased adult neurogenesis in CB1 receptor-deficient mice with no effect on cognition in WT mice</td>
<td>Wolf et al. (2010)</td>
</tr>
<tr>
<td>Activation of PPARγ</td>
<td>Induced hippocampal neurogenesis and reduced reactive gliosis in Aβ-injected rats</td>
<td>Esposito et al. (2011)</td>
</tr>
<tr>
<td>Inverse CB2 receptor agonist</td>
<td>Antagonizes CB2 receptor agonists in WT mice</td>
<td>Thomas et al. (2007)</td>
</tr>
</tbody>
</table>

AMPA, 2-amino-3-(4-hydroxyphenyl)isoxazol-5-(4-propionic acid; APP, amyloid precursor protein; CBD, cannabidiol; iNOS, inducible Nitric Oxide synthase; NAP, mitogen-associated protein; NMDA, N-methyl-D-aspartate; NO, nitric oxide; PPAR, peroxisome proliferator-activated receptor; WT, wild type.kk.

Effects of cannabidiol on in-vitro Alzheimer’s disease models

Tau pathology
CBD was reported to suppress the hyperphosphorylation of tau protein in Aβ-stimulated PC12 neuronal cells in a dose-dependent manner. The CBD-induced suppression was associated with a reduction in phosphorylated glycogen synthase kinase 3-β (p-GSK3-β), the active form of GSK3-β, a multifunctional phosphorylating serine/threonine kinase (Esposito et al., 2006a). Importantly, active p-GSK3-β is also known as tau protein kinase and is responsible for tau protein hyperphosphorylation and NFT formation in the brains of patients with AD (Sperber et al., 1995). GSK3-β activation also induces Aβ overproduction because of its impact on APP processing (Phiel et al., 2003). Furthermore, Aβ peptide induces GSK3-β phosphorylation in hippocampal and cortical neurons, thereby disrupting the Wnt signalling function (Garrido et al., 2002). Aβ-induced Wnt pathway disruptions are pivotal events in the neuronal apoptosis characteristic of AD, involving p-GSK3-β upregulation and β-catenin degradation (De Ferrari and Inestrosa, 2000). In line with this, β-catenin levels are decreased in the brains of AD patients (Sato and Kuroda, 2000). These data suggest that CBD inhibits tau hyperphosphorylation by disrupting phosphorylation of GSK3-β and thereby rescues at least some aspects of the Wnt signalling pathway. Importantly, pharmacological interventions that rescue Wnt activity have been proposed as novel therapeutics for AD treatment in the past (Esposito et al., 2006a).

Amyloid-β pathology
The direct modulatory effects of CBD on APP processing have only recently been evaluated in in-vitro studies. Transfected human neuroblastoma SHSY5YAPP+ cells showed significantly elevated full-length APP expression compared with control neuronal cells (Scuderi et al., 2014). CBD counteracted this elevation in a dose-dependent manner by inducing ubiquitination of APP without exerting any effect on control cells. The CBD effect on SHSY5YAPP+ cells was paralleled by a progressive reduction of Aβ peptide expression in cell lysates and consequently fewer apoptotic events (i.e. number of apoptotic cell bodies and neuron survival (%)) in these cells (Scuderi et al., 2014). Importantly, the peroxisome proliferator-activated receptor-γ (PPARγ) antagonist GW9662 blocked these effects of CBD, whereas the involvement of α-, β- and γ-secretases was ruled out. PPARs are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily and include three isoforms (i.e. α, β/δ and γ). PPARs have been linked to inflammation, cell proliferation and differentiation. Importantly, PPARγ receptors are expressed at low levels under physiological conditions, but increase in response to some pathological conditions including AD (Kitamura et al., 1999). In line with this, PPARγ activation has been found to reduce APP expression (D’Abramo et al., 2005) and considerably enhance clearance of Aβ in vitro (Camacho et al., 2004). Thus, CBD may exert a beneficial effect on the amyloidogenic pathway through a mechanism involving PPARγ. This presents a novel promising avenue to counteract the progression of AD and would be in line with suggestions that the regulation of PPAR activity may be therapeutically effective for AD pathophysiology. Related to the impact that CBD has on the amyloidogenic pathway, other synthetic cannabinoids (i.e. the CB2 agonist JWH-015) have been found to increase the phagocytosis of Aβ by mouse microglial cells (Ehrhart et al., 2005) and promote the removal of Aβ from human tissue sections at low doses (Tolon et al., 2009). Importantly, CB2 expression is
upregulated in glial cells under chronic neuroinflammatory conditions such as AD.

Amyloid-β-induced toxicity

CBD dose-dependently alleviated various other effects of Aβ-induced toxicity in a cultured rat pheochromocytoma PC12 cell model (Iuvone et al., 2004). CBD administration before Aβ treatment improved cell survival, and reduced lipid peroxidation and the production of reactive oxygen species. Reactive oxygen species have been found to play a role in Aβ-induced cell damage and death (Brera et al., 2000). The phytocannabinoid also decreased caspase 3 protein levels (used as a hallmark of apoptosis), DNA fragmentation and intracellular calcium levels, which were elevated in Aβ-treated cells without CBD treatment. Importantly, caspases are essential mediators of many of the pathways involved in executing the apoptotic programme following Aβ accumulation (Nicholson and Thornberry, 1997). Furthermore, Aβ-induced DNA fragmentation, a hallmark of apoptosis, has been found previously in AD models (Geschwind and Huber, 1995), and an increase in calcium levels has been suggested to be responsible for at least some of the toxic effects of Aβ (Mattson, 2002). Finally, an Aβ-induced decrease in the caspase 3/total caspase 3 ratio was counteracted by CBD, suggesting that CBD could play a protective role in the execution pathway of apoptosis as activation of caspase 3 to caspase 3 normally serves as the convergence point of different apoptotic signalling pathways (Iuvone et al., 2004). The effects of CBD appeared to be independent of CB₁ receptors as SR141716A treatment (a CB₁ receptor antagonist) did not modulate the CBD properties observed. The authors concluded that CBD exerts a combination of neuroprotective, antioxidant and anti-apoptotic effects against Aβ-induced toxicity.

In line with the above findings, stimulation of PC12 cells with Aβ led to a significant increase in nitric oxide production and inducible nitric oxide synthase (iNOS) protein expression. iNOS and its enzymatic product nitric oxide (NO) are among the most important neurotoxic effectors in AD. NO is predominantly released by activated glial cells and may disrupt neurons, thereby sustaining the proinflammatory conditions typical for AD (Cardenas et al., 2005). CBD inhibited these effects of Aβ toxicity dose dependently. This neuroprotective effect of CBD was mediated by suppressing the Aβ-induced increase in phosphorylation of p38 mitogen-associated protein kinase and activation of nuclear factor-κB (NF-κB) (Esposito et al., 2006b). The transcription factor NF-κB is stimulated by stress-responsive protein kinases (e.g., p38 mitogen-associated protein kinase) and regulates the expression of genes involved in cell differentiation, proliferation and apoptosis as well as oxidative and inflammatory responses. Furthermore, NF-κB activation is required to induce iNOS protein transcription in post-mitom 1 AD brains (Haas et al., 2002).

A more recent study could not confirm the neuroprotective effects of CBD: CBD protected rat PC12 peripheral neuronal cells and human SHSY5Y cells against oxidative stress and lipid peroxidation induced by tert-butyl hydroperoxide, but failed against Aβ₄₂ fibril and aggregate-induced neurotoxicity (Harvey et al., 2012). This unexpected finding was probably due to the fact that the previous studies incubated cells with nonfibrillar Aβ, whereas Harvey et al. (2012) utilized Aβ in its preformed (fibrillar) state when incubating the neuronal cell lines. Thus, the neuroprotective efficacy of CBD appears to be dependent on Aβ fibril formation occurring during cell exposure, which implies either a direct influence on fibril formation or interference with Aβ fibril uptake or processing. CBD was neuroprotective against oxidative stress generated from tert-butyl hydroperoxide, but not from Aβ exposure, as there are differences in the neurotoxicity profile caused by these two stressors. It is likely that Aβ activates additional pathways in inducing cell death that are not mountable by antioxidant capacity alone, whereas tert-butyl hydroperoxide directly attacks membrane lipids (Harvey et al., 2012).

Interestingly, AEA effectively protected neuronal cells against Aβ fibril and aggregate-induced neurotoxicity through a pathway unrelated to CB₁ or CB₂ receptor activation, although both neuronal cell lines expressed CB₁ receptors (low expression of CB₂ only) (Harvey et al., 2012).

The same team went on to analyse the potential inhibition of native Aβ fibrils and oligomer formation by CBD (and other cannabinoids, e.g. THC, JWH-015 and 2-AG). Human neuroblastoma SHSY5Y cells were exposed to Aβ₄₀ and cell viability was measured in the presence of CBD, SHSY5Y cells were also exposed to microglia-conditioned media (BV-2 cells) activated with lipopolysaccharide (LPS), albumin or Aβ₄₂, after which the production of tumour necrosis factor (TNF-α) and nitrite was evaluated following CBD treatment (Janefford et al., 2014). Aβ₄₂ induced a concentration-dependent loss of cell viability in SHSY5Y cells, but negligible TNF-α and nitrite production in BV-2 cells compared with LPS or albumin. CBD protected against Aβ-induced cell viability loss directly as well as against LPS-activated BV-2 conditioned media viability loss. CBD also altered the morphology of Aβ fibrils and aggregates to some extent (but to a lesser degree than other cannabinoids). However, there was no clear correlation between altered morphology and neuroprotective actions. In line with the previous study outlining the role of eCBs in Aβ-relevant neuroprotection (Harvey et al., 2012), of the other cannabinoids used, only 2-AG was found to provide significant and direct neuroprotection against Aβ₄₂ (Janefford et al., 2014). The authors raised another interesting point: there was a trend for cell viability levels to be improved in the CBD control group (i.e., without Aβ pretreatment). This may point towards a cellular proliferative or mitochondrial stabilizing effect of CBD that could potentially offset the loss of viability induced by Aβ₄₂.
Microglial function

A consistent pathology of AD is glial activation. Microglia are the resident macrophages of the brain and play a major role in the active immune defence of the central nervous system against pathological events. When membrane receptors of microglia are activated (e.g. by ATP, which is released by dying cells), these glial cells migrate towards the site of injury and release, for example, proinflammatory cytokines and NO. In AD, microglia overstimulation may be responsible for the inflammatory conditions typically found in patient brains and may result in neurodegeneration. Thus, pharmacological manipulation of microglia activity may have therapeutic potential for neurodegenerative diseases in general and for AD in particular. However, microglia can have helpful and harmful phenotypes. Thus, it is very likely that a balanced immune-modulation is required for AD therapy as immune activation of microglia can clear plaques, whereas chronic neuroinflammation can cause neuronal death/dysfunction (Krause and Müller, 2010).

Walter et al. (2003) discovered that microglia express both CB1 and CB2 receptors. Furthermore, stimulation of microglia with ATP in vitro increased the production of 2-AG and triggered glial cell migration (Walter et al., 2003). Importantly, CBD prevented the 2-AG-induced migration of microglial cells possibly by antagonism at CB2 and ‘abnormal CBD’ receptors [for the latter, see Jari et al. (1999)]. In line with this, another study found that several synthetic cannabinoids blocked Aβ-induced activation of cultured microglia, which was assessed by microglial cell activity, morphology and TNF-α release (Ramirez et al., 2005). This effect was evident for HU-210, but also for cannabinoids with CB2 selectivity (i.e. JWH-133) and no antioxidant properties (i.e. WIN 55,212-2). Interestingly, JWH-133 was as effective as the mixed CB1/CB2 agonist WIN 55,212-2 in the inhibition of microglia activation (Ramirez et al., 2005). A more recent study confirmed and expanded on these findings as not only WIN 55,212-2 and JWH-133 but also CBD dose dependently decreased the ATP-induced increase in intracellular calcium in cultured N13 microglial cells and in rat primary microglia. The properties of CBD in the N13 cell model were independent of its actions on CB1 and CB2 receptors, whereas these properties could be blocked by CB2 antagonism in the primary microglia model (Martín-Moreno, 2011). The research team also investigated a potential involvement of adenosine receptors and found that an agonist of the adenosine A2A receptor (i.e. CGS-21680) mimicked the actions of CBD. More importantly, an A2A antagonist (i.e. ZM241,385) suppressed the effects of CBD in both the N13 and the primary microglial cell models (Martín-Moreno, 2011). Finally, CBD promoted primary microglial migration, a phenomenon that could be stopped by CB1 and CB2 receptor antagonists (i.e. SR141716 and SR144528, respectively).

Acetylcholine

It is important to realize that Aβ not only induces neurodegeneration but also exerts downstream effects including the severe disruption of several neurotransmitter systems. For example, cholinergic neurons are lost in brain areas relevant for memory processing (i.e. amygdala, hippocampus and frontal cortex) and this deterioration is accompanied by a decrease in acetylcholine, which plays a crucial role in cortical development and activity and the modulation of cognition, learning and memory (Schliebs and Arendt, 2011). So far, no research has been carried out to determine the effects of CBD on the cholinergic system and the acetylcholine-related changes in AD. However, it is interesting to note that the phytocannabinoid THC was found to completely inhibit the enzyme acetylcholinesterase and its aggregating effect on Aβ in vitro (and does so more effectively than currently approved AD interventions such as donepezil and tacrine) (Eubanks et al., 2006).

Glutamate

Aβ can also cause long-term disruptions to glutamatergic neurotransmission (Schliebs and Arendt, 2011). Under normal physiological conditions, glutamate activates NMDA receptors, enabling calcium ions (Ca2+) to flow into the postsynaptic neuron. This triggers a signal cascade that produces synaptic plasticity including long-term potentiation, thereby facilitating higher order processes such as learning and memory (Parsons et al., 2013). In AD, NMDA receptors are overstimulated by the presence of excess glutamate, leading to sustained Ca2+ influx. This prolonged Ca2+ overload increases the production of NO, inhibiting mitochondrial activity and depleting intracellular ATP levels (Takeuchi, 2010). The loss of energy results in impaired dendritic and axonal transport, and neuronal function, generating an excitotoxic state and eventually neurodegeneration. In this context, it is important to keep in mind that CBD has been shown to reduce glutamate-induced, NMDA-induced, AMPA-induced and kainate-induced toxicity in rat cortical neurons (Hampson et al., 1998). However, the direct effect of CBD on the glutamatergic system in an AD-relevant context has not been investigated as yet.

Effects of cannabidiol on in-vivo Alzheimer's disease models

There is a body of literature available evaluating the therapeutic-like effects of THC and synthetic cannabinoids on AD-relevant behaviours and brain pathology [e.g. Ramirez et al. (2005); Aso et al. (2013)]. The available in-vivo evidence for the therapeutic properties of CBD in AD is much sparser. Pure CBD was found to be inactive in cognitive domains of healthy rhesus monkeys and mice [e.g. Lichtman et al. (1995); Winsauer et al. (1999); Long et al. (2010)], although there is also limited evidence that CBD (i) facilitates extinction of a contextual fear memory in rats (Bitencourt et al., 2008) and (ii) blocks
reconsolidation of aversive memories in rodents (Stern et al., 2012). Furthermore, work utilizing Cannabis spp. plant extract high in either CBD or THC showed that acute treatment with CBD-rich extracts did not impact the working memory of healthy rats in a delayed-matching-to-place task in the water maze, whereas THC-rich extracts impaired cognitive performance (Fadda et al., 2004). Interestingly, CBD-rich extracts administered concomitantly with THC-rich extracts did not block the memory-impairing (and catalepsy-inducing) effects of THC. It has been suggested that a greater, 10-fold higher dose of CBD over THC is necessary to effectively antagonize THC-mediated behavioural deficits [Fadda et al., 2004 – see also (Zuardi and Karniol (1983)) for further details on CBD–THC combination treatments/effects, see below).

Mouse models developing Alzheimer's disease-relevant phenotypes

The following in-vivo findings were not obtained in AD models, but may be relevant to some of the AD-related pathological and behavioural characteristics. In a mouse model for chronic liver disease, CBD exerted therapeutic effects on hepatic encephalopathy (i.e. normalizing increased TNF-α receptor 1 gene and decreased brain-derived neurotrophic factor expression) and improved cognitive functioning, which is impaired in mouse models for chronic liver disease (Maguen et al., 2009). The majority of CBD effects were blocked by pharmacological antagonism at A2A receptors. A follow-up study by the same research team also discovered an involvement of 5-HT1A receptor activation in the beneficial properties of CBD treatment in this model (Maguen et al., 2010). However, CBD-induced brain-derived neurotrophic factor expression changes were not mediated by either receptor, suggesting the involvement of yet to be discovered pathways.

Iron content in the brain appears to be positively correlated with poorer cognitive performance of AD patients (Ding et al., 2009). Furthermore, iron-induced memory impairments are associated with increased oxidative stress markers in the brain (De Lima et al., 2005). Thus, iron-induced cognitive deficits might be linked to oxidative damage and the antioxidant properties of CBD might be beneficial in this context. Indeed, high-dose acute CBD as well as subchronic CBD treatment recovered the object recognition memory performance of iron-treated rats without affecting cognition of control rats (Fagherazzi et al., 2011).

Pharmacological rodent models for Alzheimer's disease

Manipulations to the endocannabinoid system: AD-relevant experimental strategies were implemented for the first time when Mazzola et al. (2003) found that the amnesic effects of Aβ25-35 and Aβ42 (measured in mice using the step-through passive avoidance test) could be blocked by cotreatment with the CB1 antagonist SR141716A. Another study using pharmacological rodent models for AD evaluated changes to the ECS after rats had been exposed to cortical Aβ42 administration. Aβ42 enhanced hippocampal 2-AG (but not AEA) levels concomitant with the appearance of markers of neuronal damage, increased CB2 (but not CB1) protein expression and induced cognitive deficits in the passive avoidance task. Inhibition of eCB cellular reuptake reversed hippocampal damage and loss of memory retention (but only when administered early after the administration of Aβ42) (Van der Stelt et al., 2006). These data suggested for the first time that early modifications to the ECS might protect against Aβ neurotoxicity and its consequences. Indeed, the detrimental effects of a bilateral injection of Aβ42 fibrils into the hippocampal CA1 area of rats on spatial memory and neuroinflammation [e.g. microglia and astrocyte activation, interleukin (IL)-1β expression and Aβ clearance] were reversed by subchronic treatment with MDA7, a selective CB2 receptor agonist. Furthermore, Aβ42 injections were accompanied by increased hippocampal CB2 expression (Wu et al., 2013).

Cannabidiol treatment: Most relevant to this review are studies testing CBD in pharmacological models for AD. When mice were inoculated with Aβ42 in the hippocampus and cotreated with CBD (by the intraperitoneal route), CBD dose-dependently suppressed Aβ-induced increases in glial fibrillary acidic protein (GFAP) mRNA and protein expression (i.e. a marker of activated astrocytes) and reduced Aβ-induced iNOS and IL-1β protein expression, and the related NO and IL-1β release (Esposito et al., 2007). IL-1β is involved in events related to neurodegeneration including synthesis and processing of APP and astrocyte activation, which is followed by iNOS overexpression and excessive production of NO. Thus, CBD was effective in counteracting aspects of the neuroinflammatory response to Aβ challenge and a CB2-related mechanism was put forward by the authors (Esposito et al., 2007). Interestingly, CB2 overexpression has been detected in an Aβ-induced rat model of reactive gliosis (Van der Stelt et al., 2006) and CB2 affects reactive gliosis at neuroinflammatory sites, thereby playing a role in the progression of brain damage (Walser and Scilia, 2004).

Confirming the cognition-rescuing and anti-inflammatory effects of CBD reported by Esposito and colleagues is another study that determined the effects of chronic CBD treatment on these domains in mice injected intracerebroventricularly with fibrillar Aβ. CBD treatment reversed the compromising effects of Aβ on Morris water maze learning (no data were available for the memory consolidation and retention of these mice). CBD did not alter the Aβ-induced increase in TNF-α mRNA expression, but decreased levels of IL-6 (Martin-Moreno et al., 2011).
Transgenic mouse models for Alzheimer’s disease
The endocannabinoid system in Alzheimer’s disease transgenic mice:
A limited number of studies have focused attention on the expression profile of the cannabinoid receptors CB₁ and CB₂ in the context of AD. CB₁ immunoreactivity was reduced in hippocampal regions (i.e. CA1 and CA2/3) of APP/PS1 mice, an established transgenic mouse model for familial AD (Kalifa et al., 2011). This CB₁ phenotype was associated with astrogial proliferation and elevated expression of the iNOS and TNF-α, suggesting that lower CB₁ expression levels in AD transgenic mice may decrease anti-inflammatory processes, thereby exacerbating AD-associated pathology.

Another study found no changes to CB₂ protein expression in APP transgenic mice (Martin-Moreno et al., 2012). Finally, a triple AD transgenic mouse model (i.e. harbouring PS1M146V, APP5001, and 4q25-301L transgenes) showed increased CB₁ expression in the prefrontal cortex, dorsal hippocampus and basolateral amygdala complex, whereas expression levels were lower compared with control mice in the ventral hippocampus from 6 months of age onwards (Bedose et al., 2014).

Expanding on these earlier findings, APP23 transgenic mice were crossed with CB₁ knockout mice to study the impact of CB₁ deficiency on AD pathology (Stumm et al., 2013). Most double-mutant mice died before the onset of AD pathology, but surviving mice showed reduced levels of APP and its fragments, which were accompanied by a reduced plaque load and less inflammation. These findings point to a regulatory role of CB₁ in APP processing. Compared with APP23 transgenic and CB₁ knockout mice, double-mutant APP23/CB₁ mice showed more learning and memory deficits in the Morris water maze.

Manipulations to the endocannabinoid system:
Moving on from these expression studies using AD transgenic mice, a small number of research teams have evaluated the effects of cannabinoids other than CBD on AD-relevant behaviours and brain pathology of established transgenic mouse models for the disease. Martin-Moreno and colleagues studied the effects of prolonged oral administration of WIN 55,212-2 or JWH-133 on cognition and inflammation in APP transgenic mice (i.e. for 4 months starting at 7 months before onset of plaque pathology and cognitive deficits). The CB₂ agonist JWH-133 (but not WIN 55,212-2) prevented the development of object recognition memory impairments (Martin-Moreno et al., 2012). Furthermore, glucose uptake in the brain (as measured by fluorine-18 fluorodeoxyglucose uptake using PET), which is reduced in AD patients and correlated with cognitive deficits, was reduced in AD transgenic mice. JWH-133 intervention fully reversed this phenotype. Looking at neuroinflammation in this model system, JWH-133 normalized the density of ionized calcium-binding adaptor molecule 1 (ibal)-positive microglia (increased in AD transgenic mice) and both JWH-133 and WIN 55,212-2 reduced the enhancement of cyclooxygenase 2 (COX-2) protein levels and TNF-α mRNA expression (both increased in AD patients and AD transgenic mouse models). Furthermore, the synthetic cannabinoids could reduce the enhanced levels of Aβ40 and of the more amyloidogenic Aβ42 in APP mice, probably by enhancement of Aβ clearance through the blood–brain or CSF barrier (Martin-Moreno et al., 2012). Finally, WIN 55,212-2 (but not JWH-133) reversed the reduced levels of inactive GSK3β (i.e. pSer9-GSK3β) in AD transgenic mice without altering the expression of wild-type-like mice. Thus, WIN 55,212-2 normalized the pathological pSer9-GSK3β activity in these mice. The total protein levels of GSK3β remained largely unchanged (Martin-Moreno et al., 2012).

A recent study confirmed most of these findings when treating APP/PS1 mice with JWH-133 at the presymptomatic stage (Aso et al., 2013). JWH-133 (a) improved cognitive performance in the novel object recognition test and the active avoidance task; (b) decreased microglial reactivity and reduced the expression of proinflammatory cytokines IL-1β, IL-6, TNF-α and IFNγ; (c) reduced the expression of active p38 and stress-activated protein kinase-α/Jun NH2-terminal kinase (SAPK/JNK); (d) increased the expression of inactive GSK3β and lowered tau hyperphosphorylation; and (e) enhanced the expression of superoxide dismutase 1 (SOD1) and SOD2 around plaques, but (f) did not alter Aβ production.

Inconsistencies between these two studies (e.g. effects of JWH-133 on Aβ pathology and tau hyperphosphorylation-relevant pathways, i.e. GSK3β) were attributed to methodological differences in terms of mouse model and treatment design chosen as well as the specifics of biochemical analyses (Aso et al., 2013). In this context, it is important to note that other cannabinoids have been found to lack any therapeutic-like properties in AD transgenic mouse models [e.g. HU-210 in APP23/PS1 transgenic mice: Chen et al. (2010)].

CBD + THC combination treatment:
so far, two studies have explored the potential of CBD + THC combination compounds for AD therapy using AD transgenic mice (for further information on the potential and issues around combination treatments using THC and CBD, see below). In a first experiment, Sativex [a mixture of a THC botanical extract (containing 67.1% THC, 0.3% CBD, 0.9% cannabinol, 0.9% cannabichromene and 1.9% other phytocannabinoids) and a CBD botanical extract (containing 64.8% CBD, 2.3% THC, 1.1% cannabinol, 3.0% cannabichromene and 1.5% other phytocannabinoids) in a 1:1 proportion; developed/produced by GW Pharmaceuticals Ltd (Cambridge, UK)] was administered intraperitonially, daily for a month to parkin- null, human tau overexpressing (PK-1/Tau2Pw) mice, which presents a model of complex frontotemporal dementia, parkinsonism and lower motor neuron disease. Sativex treatment resulted in fewer abnormal stress-related behaviours (e.g.
overgrooming and stereotypes; cognition was not assessed, except spontaneous alternation version of the Y maze). Furthermore, the treatment reduced the metabolism of dopamine (but not the level of dopamine itself) as well as gliosis (e.g. Iba1 levels), neuroinflammation (e.g. GFAP levels) and iNOS levels in the cerebral cortex (Casarejos et al., 2013). Most relevant to AD is the finding that Sativex decreased the concentration of phosphorylated tau and Aβ plaques in the cortex and hippocampus and increased autophagy. The mechanism behind the effects of Sativex has not been evaluated as yet.

In a second study, botanical extracts high in THC (CBD content < 0.5%) or high in CBD (THC content < 2.5%) as well as a combination thereof (CBD + THC) were used to treat APP/PS1 transgenic mice in the early symptomatic phase (Aso et al., 2015). All three approaches preserved object recognition memory of AD transgenic mice, but THC exerted detrimental effects on cognition in control mice. CBD + THC also reduced fear-associated learning impairments of APP/PS1 mice, decreased insoluble Aβ42 (but not Aβ40) levels in the cortex and altered plaque composition (but the total amyloid burden was unchanged). All cannabinoids reduced astrogliosis (decreased GFAP staining), but only CBD + THC reduced microgliosis (i.e. decreased Iba1 staining). CBD + THC was also more effective in reducing inflammation and modifying neuroinflammatory responses in APP/PS1 mice (mRNA expression levels; for details, see Aso et al. (2015)). Interestingly, the redox protein thioredoxin 2 and the signalling protein Wnt16 were identified as significant substrates for the CBD + THC-induced effects in AD transgenic mice. Thioredoxin 2 is a key component of the mitochondrial antioxidant system that is responsible for the clearance of reactive intermediates and repairs proteins with oxidative damage. The Wnt gene family encodes secreted signalling proteins, which have been implicated in several developmental processes, including axon guidance during development and in response to traumatic injury. Moreover, activation of the Wnt signalling pathway prevents Aβ-induced neurotoxicity in vitro.

Pure cannabidiol treatment: Our team has expanded on the aforementioned studies evaluating the potential role of CB2 and CBD + THC combinations in AD therapy by focusing on CBD effects in AD transgenic mouse models. We have carried out two studies exposing AD transgenic mice and control littermates to chronic CBD (or vehicle) treatment, both to test for remedial as well as preventative properties of CBD for AD therapy. In the remedial arm of this study, we treated double transgenic APP/PS1ΔE9 (APP/PS1) chronically with CBD (daily intraperitoneal injections) after the development of cognitive deficits and Aβ pathology. CBD rescued social recognition memory and reversed object recognition deficits of male APP/PS1 transgenic mice. These effects were specific for recognition memory as CBD had no impact on fear-associated memory or anxiety behaviours (Cheng et al., 2014a). Impairments in object recognition have been linked to dysregulation of the glutamatergic system (Nilsson et al., 2007) and CBD has been found to augment the effects of an NMDA receptor antagonist in humans (Hallak et al., 2011). Furthermore, CBD protects against glutamate neurotoxicity (Hampson et al., 1998) and memantine, another NMDA receptor antagonist, improved object recognition in another transgenic AD mouse model (Scholtzova et al., 2008). Therefore, CBD may improve recognition memory through the glutamatergic pathway.

For the preventative research strategy, we treated APPxPS1 mice with CBD or vehicle using a daily voluntary oral administration scheme for 8 months beginning at 2.5 months of age when AD-like pathophysiology is still sparse. Long-term oral CBD treatment prevented the development of social recognition deficits in male APP/PS1 mice (Cheng et al., 2014b). The beneficial effect of CBD on social recognition memory was not associated with a direct effect on Aβ levels. Insoluble and soluble levels of Aβ40 and Aβ42 were not different between vehicle-treated and CBD-treated APP/PS1 mice in the cortex and hippocampus. Levels of oxidation were not significantly altered in APP/PS1 mice in comparison with their age-matched wild-type littermates, nor did we detect changes in the level of lipid oxidation in the cortex of CBD-treated animals, despite known antioxidant properties. It is possible that brains were collected at an age (i.e. around 10 months of age) where nucleic acid oxidation differences between APP/PS1 and control mice are no longer evident (normally observed at 3–5 months of age). Although not significant, the data obtained on the basis of the administration of only one CBD dose (i.e. 20 mg/kg) suggested that CBD might exert a beneficial effect on cytokine levels, in particular, TNF-α, which would be in line with the earlier findings discussed above [e.g. Martin Moreira et al. (2011)].

The study also showed a complex relationship between CBD treatment, AD genotype and brain levels of cholesterol and phytosterols. These findings will be followed up in future work. This is important as disturbances in brain cholesterol metabolism are associated with the major pathological features of AD (including Aβ and tau pathology) and dietary phytosterols can either interfere with critical functional processes in AD or decrease amyloidogenic processing.

The endocannabinoid system and cannabinoid therapy in patients with Alzheimer’s disease
To date, there have been no clinical trials evaluating the therapeutic potential of CBD for AD. This is probably because of the limited number of preclinical research studies investigating the effects of CBD in AD thus far. However, two clinical trials testing CBD have been conducted, which have some relevance for AD. In 2009,
an interventional study explored the value of CBD in treating cognitive dysfunction in schizophrenia (http://www.ClinicalTrials.gov identifier NCT00588731). The study was based on a 6-week, randomized, placebo-controlled, fixed-dose trial comparing CBD with placebo added to a stable dose of antipsychotic medications in patients diagnosed with schizophrenia. The second interventional study (http://www.ClinicalTrials.gov identifier NCT01502046) started in 2011 and was a double-blind, randomized, crossover, placebo-controlled phase 2 clinical trial to assess the neuroprotective properties of CBD, THC and Sativex in patients with Huntington's disease. Unfortunately, it was not possible to obtain any information from the http://www.ClinicalTrials.gov website or from the lead investigators on the effects of CBD effects on cognition or neuroprotection in humans. Nevertheless, a few studies evaluated the role of the ECS in AD patients and the effectiveness of cannabinoid treatment other than CBD in AD therapy and these findings will be outlined in the following sections.

The endocannabinoid system in Alzheimer's disease

Westlake *et al.* (1994) carried out autoradiographic studies using
$[^{3}H]$CP 55,940 binding (i.e. synthetic CB$_1$ and CB$_2$ receptor agonist) in fresh-frozen brain sections from normal aged humans, AD patients and patients who died with other forms of cortical pathology. In AD brains, compared with normal brains,
$[^{3}H]$CP 55,940 binding was reduced in various regions of the hippocampus and the caudate nucleus. Fewer significant reductions were detected in the substantia nigra and the globus pallidus. Other neocortical and basal ganglia structures were not different from control levels. The levels of mRNA expression did not differ between AD and control brains, but there were regionally discrete losses of CB$_1$/CB$_2$ mRNA in cells that had high expression levels of these endocannabinoid receptors in the hippocampus. It is important to note that the reductions in binding did not correlate with or localize to areas showing histopathology (i.e. overall tissue quality or stainings for neuritic plaques and NFTs). Furthermore, reduced
$[^{3}H]$CP 55,940 binding was associated with increasing age and with other forms of cortical pathology. Thus, reductions in CB$_1$/CB$_2$ receptor expression appeared to be related to generalized aging and/or disease process and were not selectively associated with AD.

These findings could not be replicated by follow-up investigations. For example, Ramirez *et al.* (2005) detected CB$_1$ and CB$_2$ receptor expression together with markers of microglia activation in senile plaques in AD patients and that CB$_1$-positive neurons were considerably reduced in areas of microglia activation (no change in CB$_2$ expression). In line with this, immunoblotting for CB$_1$ receptors in post-mortem cortical brain tissues (Brodmann area 10) from a cohort of neuropathologically confirmed AD patients and age-matched controls showed reduced CB$_1$ expression in AD brains, which was consistent with the loss of pyramidal cortical neurons in which these receptors are highly expressed. A correlation between reduced CB$_1$ expression and hypophagia was found, supporting the idea of a potential use of receptor agonists or C. sativa-derived cannabinoids in the management of AD-associated eating disorders (Solinas *et al.*, 2013).

Another study analysed the expression of not only CB$_1$ and CB$_2$ receptors and also of FAAH in hippocampus and entorhinal cortex sections from post-mortem brains of AD patients using immunohistochemistry (Benito *et al.*, 2003). FAAH expression was increased in neuritic plaque-associated astrocytes, whereas CB$_2$ receptors were abundantly and selectively overexpressed in activated microglia. Supporting this finding is another study reporting elevated levels of CB$_2$ receptor in post-mortem cortical brain tissues of AD patients. The elevated expression did not correlate with cognitive status, but two relevant AD markers, that is, Aβ$_{42}$ levels and senile plaque manifestation (Solinas *et al.*, 2013). It can be postulated that CB$_2$ receptors might be modulators of the inflammatory response associated with neurodegenerative processes and therefore present a possible target for new therapeutic approaches. Importantly, the expression of CB$_1$ receptors was not affected by AD. In line with Benito *et al.* (2003) is a more recent study applying semiquantitative (immunoblotting) and quantitative (radioligand binding) assessments to confirm that CB$_1$ receptor levels were unchanged in AD in several brain regions (i.e. the frontal cortex, anterior cingulate gyrus, hippocampus and caudate nucleus) (Lee *et al.*, 2010). Finally, comparative protein profiling and quantitative morphometry showed that overall CB$_1$ protein levels in the hippocampi of AD patients remained unchanged relative to age-matched controls and that CB$_1$-positive presynapses engulfed Aβ-containing senile plaques (Mulder *et al.*, 2011). Lee *et al.* (2010) commented on the limitations of their study design on neuroanatomical resolution (i.e. no subregion analyses were carried out), which did not enable the detection of subtle CB$_1$ expression changes in specific cytoarchitectural or neuroanatomical domains. Furthermore, the functional status of CB$_1$ receptors was not considered, which might be important, as Ramirez *et al.* (2005) found elevated nitration of both CB$_1$ and CB$_2$ protein in AD brains. It is interesting that a correlation was found between frontal cortical CB$_1$ immunoreactivity and cognitive scores (i.e. MMSE and CAMCOG) assessed within a year before death in the AD patient group, suggesting that CB$_1$ receptors are intact in AD and may play a role in preserving cognitive function (Lee *et al.*, 2010). However, a more recent study using immunoblotting could not replicate this finding when analysing correlations between cortical CB$_1$ expression and the cognitive status (Mini Mental State Examination score) of AD patients.
The ECS seems to be further involved in human AD pathology. In a case–control study, the circulating levels of plasma eCBs were analysed and the relationship between eCBs and TNF-α was explored in elderly control participants and AD patients. In comparison with the controls, there were no significant differences in measured AEA or 2-AG concentrations in plasma samples from patients with AD. Furthermore, eCB levels in the CSF were not correlated with cognitive performance in healthy controls at risk for AD. In pooled plasma samples, an inverse correlation was observed between plasma levels of 2-AG (but not AEA) and TNF-α, although the levels of TNF-α were very low (Koppel et al., 2009). Further longitudinal studies will be required to conclusively assess the impact of progressive AD pathology on circulating eCB levels.

In other studies increased hippocampal protein concentrations for the 2-AG synthesizing enzyme DAGL-αβ was found in brain tissue of patients with definite AD (Braak stage VI). In particular, DAGL-β expression was found in microglia accumulating near senile plaques and apposing CB2-positive presynapses. Furthermore, microglia, expressing 2-AG-degrading enzymes (i.e. ABHD6 and MAGL) began to surround senile plaques in brain tissue of patients with probable AD (Braak stage III) (Mulder et al., 2011). Interestingly, ABHD6 expression ceased in NFT-bearing pyramidal cells, whereas pyramidal cells containing hyperphosphorylated tau retained MAGL expression (although at levels significantly lower than those in neurons lacking NFT pathology). Finally, it was shown that MAGL recruitment to biological membranes was impaired in AD brains, suggesting that disease progression slows the termination of 2-AG signalling.

To conclude, the ‘eCB phenotype’ of AD brains appears to be complex and findings appear contradictory at times and highly dependent on the methodologies applied (e.g. type of polyclonal antibody, issue of cellular resolution in autoradiography studies, selection of mixed CB1/CB2 vs. selective receptor agonists). However, summarizing the diverse findings conservatively suggests that alterations in the localization, expression and function of cannabinoid receptors occur in AD and may play a role in its physiopathology, thereby providing a target for therapeutic interventions.

Effects of cannabinoids other than cannabidiol on Alzheimer's disease patients

Volicer et al. (1997) were the first to evaluate the therapeutic effectiveness of cannabinoids in AD. Using a placebo-controlled crossover design, with each treatment period lasting 6 weeks, the effects of dronabinol (i.e. a pharmaceutical formulation of THC) on patients with a diagnosis of probable AD who refused food were determined. AD patients on dronabinol treatment showed an increase in body weight and decreased severity of disturbed behaviour. This effect persisted during the placebo period in patients who received dronabinol first. Adverse reactions observed more commonly during the dronabinol treatment than during placebo periods included euphoria, somnolence and tiredness, but did not require discontinuation of therapy (Volicer et al., 1997).

<table>
<thead>
<tr>
<th>Component of ECS</th>
<th>AD-relevant effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB1 receptors</td>
<td>No differences were reported for receptor expression, distribution or availability in the cortex or the hippocampus of AD patients</td>
<td>Berito et al. (2000); Lee et al. (2010); Mulder et al. (2011); Ahmad et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>CB1 receptor expression in AD was comparable with normal ageing</td>
<td>Westlake et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>CB1 receptor expression was reported to be reduced in cortical areas and neurons away from senile plaques</td>
<td>Ramirez et al. (2008); Solas et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>CB1 receptor expression was reported to correlate with any AD biomarkers or cognitive deficits</td>
<td>Solas et al. (2013)</td>
</tr>
<tr>
<td>CB2 receptors</td>
<td>Nitrolylated in AD brain allowing the potential for impaired coupling of receptors</td>
<td>Ramirez et al. (2008); Solas et al. (2013)</td>
</tr>
<tr>
<td>FAAH</td>
<td>CB2 receptor expression reported to correlate with Aβ42 levels and plaque deposition, but not cognitive changes</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>CB2 receptor expression reported to be abundantly and selectively overexpressed in AD brains</td>
<td>Berito et al. (2003); Ramirez et al. (2008); Benito et al. (2003); D’Addario et al. (2012); Mulder et al. (2011); Pascual et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Nitrolylated in AD brain, allowing the potential for impaired coupling of receptors</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Significantly increased FAAH concentration in neocortical plaque-associated glia and in peripheral blood mononuclear cells of AD patients</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No changes in FAAH protein content in hippocampal AD patients</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decreased FAAH activity in the frontal cortex of AD patients, which is mimicked by the addition of Aβ42 peptide to control brain samples</td>
<td></td>
</tr>
<tr>
<td>AEA</td>
<td>No differences reported for AEA plasma concentration in AD patients compared with control participants</td>
<td>Koppel et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Lower AEA concentration in AD brain (medialfrontal and temporal cortex) compared with controls and inversely correlated with Aβ42 peptide and severity of cognitive deficits</td>
<td>Jung et al. (2012)</td>
</tr>
<tr>
<td>2-AG</td>
<td>Increased degradation of AEA in AD frontal cortex compared with the controls</td>
<td>Pascual et al. (2014); Koppel et al. (2009); Mulder et al. (2011)</td>
</tr>
</tbody>
</table>

AD; Alzheimer's disease; AEA, N-arachidonoylthanolamine; 2-AG, 2-arachidonoylglycerol; DAGL, dacylglycerol lipase; ECS, endocannabinoid system; FAAH, fatty acid amide hydrolase; MAGL, monooacylglycerol lipase.
A second study measured the effect of dronabinol on nocturnal motor activity as night-time agitation occurs frequently in patients with dementia. Six late-stage AD patients were treated daily for 2 weeks. Dronabinol led to a reduction in nocturnal motor activity and the patients also showed improved Neuropsychiatric Inventory scores including for agitation, aberrant motor and night-time behaviours. No side effects were observed for dronabinol treatment (Walther et al., 2006). These authors followed up on their initial findings with a first randomized, controlled crossover trial of dronabinol for night-time agitation in two AD patients using actigraphy as the objective measure. Administration of dronabinol led to reduced night-time activity and strengthened circadian rhythms (Walther et al., 2011).

Finally, another case study investigated the effects of nabipilone, a synthetic cannabinoid supposedly mimicking the effects of THC, in the context of AD. Nabipilone reduced the severity of agitation and resistiveness of an AD patient during evening personal care, with no emergent side effects. Previous treatment attempts using donepezil and memantine had yielded disappointing results for this patient (Passmore, 2008). No blinded or placebo studies have been carried out to date.

The future of cannabidiol in Alzheimer’s disease therapy
To consider CBD as a novel therapeutic option for AD naturally requires an assessment of how well humans tolerate CBD and what potential side effects might be expected. CBD has been described as being nontoxic and noncataleptic, with no impact on food intake or physiological parameters, such as heart rate, blood pressure and body temperature, and no role in psychomotor or psychological functions. Chronic CBD use and high doses of up to 1500 mg/day (orally) or 30 mg intravenously are well tolerated in humans. However, some studies report that CBD can inhibit hepatic drug metabolism, be immunosuppressive, induce lymphocyte apoptosis in vitro and decrease fertilization capacity and the activity of p-glycoprotein and other drug transporters [reviewed in depth in Bergamaschi et al. (2011)]. Importantly, long-term safety studies are lacking to this date and the effect of CBD in particular in the elderly has not been assessed at all. Drug–drug interactions have not been evaluated in any detail either. However, it is known that CBD exerts an inhibiting effect on CYP isozymes, primarily CYP2C and CYP3A classes of isozymes. Thus, CBD could potentially impact on antiepileptic medication, as for example, valproate and clobazam are metabolized by these isozymes. In conclusion, further studies are needed to clarify these potential in-vitro and in-vivo side effects before CBD can be trialled clinically for a detailed overview of CBD safety in vitro and in vivo, both for rodents and humans, see Bergamaschi et al. (2011): Tables 1 and 2; for side effects of CBD in vitro and in vivo, for rodents, monkeys and humans, see Bergamaschi et al. (2011): Tables 3 and 4).

It will also be necessary to work out the best possible administration route for CBD to achieve clinically effective plasma and brain concentration routes. Some initial studies have been completed in this respect using rodent models (Deiana et al., 2012), but recent focus has shifted to assessing different delivery methods for cannabinoids in humans. CBD has been delivered orally in an oil-based capsule in some human trials, but because of the low water solubility of CBD, oral cannabinoid administration can result in slow and erratic absorption. Furthermore, and as discussed earlier, CBD is barely absorbed after oral administration (and absorption rates can be highly variable): bioavailability from oral delivery has been estimated to be as low as 6% because of significant first-pass metabolism in the liver (Mechoulam et al., 2002; Devinsky et al., 2014). Both smoking and intravenous administration of cannabinoids produce reliable and similar pharmacokinetic profiles. However, smoking carries toxic risks and loss of active drug by combustion. An alternate method is intrapulmonary administration of cannabinoids through vaporization, which is considered an effective mode of delivery as it results in fast onset of action and high systemic bioavailability and avoids risks associated with smoking and the formation of pyrolytic toxic compounds as a result of combustion (Solowij et al., 2014). However, this delivery method is limited by the need for specialized equipment and patient cooperation with the administration method (Devinsky et al., 2014). The combined CBD+THC product Sativex is administered as an oromucosal spray and appears to be safe and effective (Wade et al., 2010). The bioavailability achieved by oral mucosal delivery appears to be similar to the oral route, but less variable. Finally, transdermal approaches have also been investigated, but because of CBD’s high lipophilicity, special eoshosomal delivery systems would be required to prevent drug accumulation in the skin, which are impractical and costly (Lodzki et al., 2003; Devinsky et al., 2014).

CBD + THC combination treatment strategy
It would be beyond the focus of this review to discuss in detail the potential of combined CBD + THC treatment for AD therapy, although recent evidence suggests that such a combination therapy might provide the ‘best’ AD pathology-counteracting properties of cannabinoids without the known detrimental effects of pure THC treatment (i.e. by blocking those effects through CBD co-treatment). However, the nature of the interactive relationship between THC and CBD appears to be very complex and the evidence provided in the literature to date is inconclusive, if not contradictory [i.e. CBD blocking and/or facilitating THC effects; e.g. Kastori et al. (1974); Varvel et al. (2006); Klein et al. (2011); comprehensively reviewed in McPartland et al. (2015)].
Reviewing this growing body of literature, it is important to pay close attention to the timing of CBD versus THC intake, the CBD:THC ratio and the route of administration. CBD can increase the potency of THC by pharmacokinetic interaction if CBD is administered before THC or a pharmacodynamic interaction may occur when both cannabinoids are taken together, mainly at a high-dose ratio of CBD:THC [reviewed in Bergamaschi et al. (2011)].

It should be emphasized here that THC alone increases heart rate and alters blood pressure, which may have serious consequences in patients with heart disease (Jones, 2002). Furthermore, THC impacts on the risk of developing psychosis, although this effect is predominantly observed after long-term adolescent THC/Cannabis spp. abuse and mostly in individuals with a genetic predisposition for psychosis (Arnold et al., 2012). Long-term use of THC can also lead to the development of Cannabis addiction, a growing problem in Western society. Finally, the negative effects of THC on cognitive abilities seem to be reversible after abstinence, except in heavy Cannabis spp. users (Bolla et al., 2002). In this context, it is important to realize that there are no systematic data available determining the physiological and psychological effects of long-term THC treatment in the elderly population to date [reviewed in Grotenhermen (2007)].

Concluding remarks
AD is the most common form of dementia (i.e. around 70% of all dementia cases) and it is predicted that AD will affect one in 85 individuals globally by 2050. For example, over 300,000 Australians are currently affected by dementia at an estimated cost of $6.6 billion per annum, with the numbers expected to grow to more than 700,000 by 2050. Considering the looming burden of AD, treatments that could delay or even prevent the onset of AD would offer tremendous public health benefits. Unfortunately, current therapeutic options are limited to modest symptomatic relief, without preventing disease progression. The studies reviewed in this paper suggest that CBD could well provide symptomatic relief and/or prevent disease progression for AD patients. However, a more systematic and in-depth characterization of CBD in vivo, using established rodent models, is required to understand the full consequences of long-term CBD treatment and to analyze the potential side effects of CBD in an ageing organism. Once these data are available, the translation of this preclinical work could be realized very quickly as CBD is readily available and appears to be safe for human use. In fact, a number of countries (e.g. Canada and Germany) have already approved CBD-containing products for the treatment of pain and inflammation in multiple sclerosis patients.

Such research would be very timely as it also falls within existing and developing federal regulations on medical applications of Cannabis spp. and more importantly, extracts thereof, worldwide (e.g. Australia, Canada and Germany). Finally, understanding the pharmacology of CBD in more detail including its long-term effects in the elderly will be relevant beyond research into AD therapy as CBD has also been considered a treatment option for conditions such as Parkinson’s disease and schizophrenia.

Acknowledgements
T.K. would like to thank Jerry Tanda for critical comments on the manuscript.

This work was supported by ANZ Trustees (i.e. Mason Foundation National Medical Program). T.K. and B.G. are supported by fellowships from the National Health and Medical Research Council (NHMRC: #1045643 and #630445, respectively). T.K. is also supported by an NHMRC project grant (#1102012), the NHMRC dementia research team initiative (#1095215), an R&D agreement with GW Pharm (UK) and the Rebecca L. Cooper Medical Research Foundation Ltd.

Conflicts of interest
There are no conflicts of interest.

References
Bento G, Nóbrega E, Tolid RM, Carne JJ, Rabinow A, Hillard CJ, Romero I (2003). Cannabinoid CB2 receptors and fatty acid amide hydroxylase are selectively
CBD therapy in Alzheimer’s disease Karl et al. 167

overexpressed in neurotic plaque-associated gliosis in Alzheimer’s disease brains.

effects of cannabidiol, a Cannabis active constituent. Curr Pharm Sci

(2001). Molecular targets for cannabidiol and its synthetic analogues: effect
of cannabidiol VR1 receptors and on the cellular uptake and amyotrophic

(2003). Cloning of the first 5HT-DAG lipase points to the spatial and temporal

Bittencourt RM, Pamplona PA, Tachaiashii RN (2008). Facilitation of contextual fear
memory extinction and antiepileptic effects of AM404 and cannabidiol in

Bolla KI, Brown K, Eldoroth D, Tate K, Cadet JL. (2002). Dose-related neurocognitive

Booce GW (2011). Cannabidiol as an emergent therapeutic strategy for lessening

Brens B, Serrano A, do Corocho ML (2005). Beta-amyloid peptides are cytotoxic to

Cabral OA, Raborn ES, Griffin L, Dennis J, Mariano-Cabral F (2006). CB2
receptors in the brain: role in central immune function. Br J Pharmacol

Peroxorome-proliferator-activated receptor gamma induces a clear-

Campbell VA, Gowen R (2002). Alzheimer’s disease: taking the edge off

Canojos AC, Palacios J, Agudo T, Aguilar DG, Guzmán M, Gálve-Robert I,
Guimarães FS (2011). Hippocampal proliferative processes are needed

the active component of mari-

Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.

CBD therapy in Alzheimer's disease Karl et al. 159

